In the past 20 years or so, manufacturers have been able to reduce waste and variability in their production processes and dramatically improve product quality and yield (the amount of output per unit of input) by implementing lean and Six Sigma programs. However, in certain processing environments—pharmaceuticals, chemicals, and mining, for instance—extreme swings in variability are a fact of life, sometimes even after lean techniques have been applied. Given the sheer number and complexity of production activities that influence yield in these and other industries, manufacturers need a more granular approach to diagnosing and correcting process flaws. Advanced analytics provides just such an approach.

Advanced analytics refers to the application of statistics and other mathematical tools to business data in order to assess and improve practices. In manufacturing, operations managers can use advanced analytics to take a deep dive into historical process data, identify patterns and relationships among discrete process steps and inputs, and then optimize the factors that prove to have the greatest effect on yield. Many global manufacturers in a range of industries and geographies now have an abundance of real-time shop-floor data and the capability to conduct such sophisticated statistical assessments. They are taking previously isolated data sets, aggregating them, and analyzing them to reveal important insights.