Few areas are experiencing more innovation and investment than big data and analytics. New tools and improved approaches across the data-analytics ecosystem are offering ways to deal with the challenge of achieving scale. From our vantage point, three hold particular promise.

First is the emergence of targeted solutions from analytics-based software and service providers that are helping their clients achieve a more direct, and at times faster, impact on the bottom line. An emerging class of analytics specialists builds models targeted to specific use cases. These models have a clear business focus and can be implemented swiftly. We are seeing them successfully applied in a wide range of areas: logistics, risk management, pricing, and personnel management, to name just a few. Because these more specific solutions have been applied across dozens of companies, they can be deployed more readily. Collectively, such targeted applications will help raise management’s confidence in investing to gain scale. There’s still a need for a shift in culture and for a heavy emphasis on adoption, but the more focused tools represent a big step forward.

Second, new self-service tools are building business users’ confidence in analytics. One hot term gaining traction in the analytics world is “democratization.” Getting analytics out of the exclusive hands of the statistics gurus, and into the hands of a broad base of frontline users, is seen as a key building block for scale. Without needing to know a single line of coding, frontline users of new technology tools can link data from multiple sources (including external ones) and apply predictive analytics. Visualization tools, meanwhile, are putting business users in control of the analytics tools by making it easy to slice and dice data, define the data exploration needed to address the business issues, and support decision making. Companies such as American Express, Procter & Gamble, and Walmart have made major investments in these types of tools to democratize the use of analytics.

Finally, it’s becoming much easier to automate processes and decision making. Technology improvements are allowing a much broader capture of real-time data (for example, through sensors) while facilitating real-time, large-scale data processing and analysis. These advances are opening new pathways to automation and machine learning that were previously available only to leading technology firms.

Comment