The payoff from joining the big-data and advanced-analytics management revolution is åno longer in doubt. The tally of successful case studies continues to build, reinforcing broader research suggesting that when companies inject data and analytics deep into their operations, they can deliver productivity and profit gains that are 5 to 6 percent higher than those of the competition. The promised land of new data-driven businesses, greater transparency into how operations actually work, better predictions, and faster testing is alluring indeed.

But that doesn’t make it any easier to get from here to there. The required investment, measured both in money and management commitment, can be large. CIOs stress the need to remake data architectures and applications totally. Outside vendors hawk the power of black-box models to crunch through unstructured data in search of cause-and-effect relationships. Business managers scratch their heads—while insisting that they must know, upfront, the payoff from the spending and from the potentially disruptive organizational changes.

The answer, simply put, is to develop a plan. Literally. It may sound obvious, but in our experience, the missing step for most companies is spending the time required to create a simple plan for how data, analytics, frontline tools, and people come together to create business value. The power of a plan is that it provides a common language allowing senior executives, technology professionals, data scientists, and managers to discuss where the greatest returns will come from and, more important, to select the two or three places to get started.

There’s a compelling parallel here with the management history around strategic planning. Forty years ago, only a few companies developed well-thought-out strategic plans. Some of those pioneers achieved impressive results, and before long a wide range of organizations had harnessed the new planning tools and frameworks emerging at that time. Today, hardly any company sets off without some kind of strategic plan. We believe that most executives will soon see developing a data-and-analytics plan as the essential first step on their journey to harnessing big data.

The essence of a good strategic plan is that it highlights the critical decisions, or trade-offs, a company must make and defines the initiatives it must prioritize: for example, which businesses will get the most capital, whether to emphasize higher margins or faster growth, and which capabilities are needed to ensure strong performance. In these early days of big-data and analytics planning, companies should address analogous issues: choosing the internal and external data they will integrate; selecting, from a long list of potential analytic models and tools, the ones that will best support their business goals; and building the organizational capabilities needed to exploit this potential.

Successfully grappling with these planning trade-offs requires a cross-cutting strategic dialogue at the top of a company to establish investment priorities; to balance speed, cost, and acceptance; and to create the conditions for frontline engagement. A plan that addresses these critical issues is more likely to deliver tangible business results and can be a source of confidence for senior executives.

Comment